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P bstract 

It  is  typical in 1 . r i m  applications  to  exam- 
ine a single scale or t L ,  ;o , .der   some space of scales 
in the  image  without  knowing  which scale is appropri- 
ate for  each  location in the  image.  However,  many 
images  contain a wide  variation in the  distance to   the 
scene  points,  and  thus  objects  of  the  same  size  can 
appear  at  greatly  differing scales in the  image. W e  
present a method  where  the scale of  the  smoothing  and 
edge detection is varied locally  according to  the  dis- 
tance  to  the  scene  point,  which  we  estimate  through 
stereoscopy. The edges that are detected are thus  at  the 
same scale in the  world,  rather  than  at  the  same scale 
in the  image.  This  method  is  implemented  efficiently 
by smoothing  the  image  at a discrete  set of scales  and 
performing  interpolation  to  estimate  the  response  at 
the  correct scale fo r  each  pixel.  The  application of this 
technique  to  an  ordnance  recognition  problem  has  re- 
sulted in a considerable  improvement in performance. 

1 Introduction 

Image  smoothing  and edge detection have been in- 
tensely  studied subjects  in computer vision and image 
processing. The selection of an  appropriate scale for 
these processes is a problem that  has received less at- 
tention. It is  well known that using a single fixed 
scale over the  entire image often produces  undesirable 
results,  since  edge  phenomena  occur at a multitude 
of scales. To  alleviate  this problem,  techniques that 
examine the entire  space of scales [6, 7, 151 or that 
adaptively select a scale based on local image proper- 
ties [5, 8, 111 have been developed. However, the op- 
timal  method  for combining the information from the 
scale-space is unclear,  and  the scale selection methods 
base  their decisions on image properties,  rather  than 
the  true scale at which the phenomena  occur. 

In  many  applications,  it is desirable to detect edges 
that  are at the  same scale in the world, which we call 

the true scale, rather  than at theLsame  scale  in the im- 
age or by selecting a scale based  on  local image prop- 
erties.  Consider, io:. c.ample,  an image  containing a 
textured surface in t,rf,e foreground and a structure of 
interest  further  from  the camera. Techniques based 
on local image  properties consider the  textured sur- 
face at the scale it  appears  in  the image. At this scale, 
the edges may appear  quite significant, while, in fact, 
this  appearance is only due to perspective effects. If a 
method  (such as stereoscopy) is available to determine 
the  distance of the scene points from the camera, we 
can safely smooth  these  phenomena, while preserving 
the significant edges. Furthermore, if  we seek objects 
of known size, the smoothing and edge  detection pro- 
cess can  be  tuned to  detect edges of the  appropriate 
scale, regardless of their  distance from the camera. 

In  addition to  its value for scale selection, the stere- 
oscopy output is useful in  determining edge salience 
with  respect to  the scene characteristics. For example, 
edge salience measures  such as length  and  straightness 
have been used [14]. However, the values these mea- 
sures take  are highly dependent  on the distance of the 
edge from the camera. The stereo  range  information 
can  be used to normalize  these  measures  with  respect 
to  scene size and  it is thus possible to  determine edge 
salience with  respect to  the  true scale rather  t,han  the 
image scale. 

We have implemented  these  techniques  as a vari- 
ation of the Canny edge detector [l], but  they  can 
be  applied to  most edge detection  methods.  A map- 
ping function between the local depth at each pixel 
and  the image scale values is first  determined. We 
next  smooth the image at a discrete set of scales us- 
ing Gaussian  derivative  filters. The  appropriate scale 
response at each pixel is then  interpolated from the 
discrete  set of filter responses (similar to  idea of steer- 
able or deformable  filters [2, 131). These responses 
are next  normalized,  since the overall response to  a 
Gaussian  derivative  filter is a function of the scale 
of the filter.  Edge  detection then proceeds normally, 
extracting  edge  chains using non-maxima  suppression 



Figure 1: Range data extracted from a stereo  pair. (a) Left  image of a stereo pair. (b) Distance from the camera  mapped 
into gray  values.  .Black ”- .’- :nrlicate no valid range data. (c) Distances  after f”ire p;x& with no  range data. 

and hysteresis thteslw, ,nc. ‘yrese edge chains are fi- 
nally passed to  a stage  that determines  edge salience 
with  the help of the stereo  range  map. 

We give results that show that these techniques re- 
sult  in significantly improved  performance  in a target 
recognition application  in which unexploded ordnance 
is detected using the image  edge  map. 

2 Depth acquisition 

While  any  method that  can associate depth values 
with image pixels could be used with this  method, 
we concentrate  on the use of stereoscopy to  compute 
dense  range  maps of the scene. The techniques that 
we use to compute the stereo  range data have been 
described elsewhere [9, 101. We  briefly summarize  this 
method  here. 

An off-line step, where the stereo  camera  rig is cal- 
ibrated, must  first be performed. We use a camera 
model that allows arbitrary affine transformations of 
the image  plane [16] and  that has been extended to 
include  radial  lens  distortion [3]. The remainder of 
the method is performed on-line. 

At run-time,  each image is first  warped to remove 
the lens distortion  and  the images are rectified so 
that  the corresponding scan-lines yield corresponding 
epipolar lines in the image. The disparity between 
the left and  right images is measured for each pixel by 
minimizing the sum-of-squared-difference (SSD) mea- 
sure of windows around  the pixel in the Laplacian of 
the image. Subpixel  disparity  estimates  are  computed 
using parabolic  interpolation  on the SSD.values neigh- 
boring the minimum.  Outliers are removed through 
consistency checking and  smoothing is performed over 
a 3 x 3  window to reduce noise. Finally, the coordi- 
nates of each pixel are computed using triangulation. 

Note that  not every pixel is assigned a range with 
this  method.  There  are a number of factors that result 

in various pixels :zng assigned a range,  including 
occlusion, window effects, finite  disparity  limits, low 
texture,  and outliers.  Despite this problem, we must 
have a range  estimate at each point  in the image in 
order to  estimate the scale that should be used for 
smoothing at that  point. To resolve this dilemma, 
we propagate the range values from neighboring pix- 
els using a simple method that approximates  nearest 
neighbor  search. 

Figure 1 shows an example of the  range  data com- 
puted using these  techniques.  In this case, we fail to 
get  range data at the left edge of the image, since 
this is the left image of. a stereo  pair,  and  there  are 
significant areas over the rest of the image  where the 
range data is discarded as not reliable. These values 
are filled with good estimates using the propagation 
techniques. 

3 Smoothing with variable scale 

We perform variable-scale smoothing  using  the 
stereo  range data  to select the  appropriate scale at 
each pixel. The first step is to  construct a mapping be- 
tween the range data  that  has been computed  for  the 
scene and  the scale a t  which the  smoothing should  be 
performed. We construct  this  mapping off-line prior 
to  the smoothing. However, this  mapping could be 
easily constructed on-line in  order to  allow it  to vary 
with scene parameters. 

We use the following mapping  function: 

where R ( x ,  y) is the range  computed at the image 
point ( x ,  y),  a ( x ,  y) is the scale to  be used at ( x ,  y),  
and K is a  pre-determined  constant. 

The  constant, K ,  in this mapping  function  can be 
determined using several  methods. One possibility is 
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to modify an  automatic scale selection method (see, 
for example, [4]) to  examine the image scale normal- 
ized by the  depth values. A second possibility is to 
not  limit ourselves to a single scale, but  to consider 
the scale-space as in [15]. In  this case, the scale-space 
can  be  warped- such that  the scales levels correspond 
to  true scale rather  than image scale. We use a third 
alternative. Since our  primary  application for these 
techniques is in  detecting  objects of known size, we 
select K based  on the known size of the objects. 

In following with  Canny's  edge  detection  method 
[I], we use Gaussian  filters to perform image smooth- 
ing. However, since we VL'. hc scale at each pixel, 
the responses we want are . *?r' .cd by: ' 

w w  
SZ(X,Y) = I ( x  + i , Y  + W U ( Z J / ) ( & A ,  

i,-wj=-w 

where I(z, y) is the image  brightness at  (x,  y), 

N c ( X , Y )  = &e- 2~ , and  2W + 1 is the fil- 
ter window size. Unfortunately, it is not efficient to 
compute  this exactly  for  each  image pixel. We per- 
form this unconventional  operation by convolving the 
image with a discrete  set of Gaussian filters of various 
scales and  interpolating  the result at the  appropriate 
scale for each pixel. This  method for approximating 
a continuum of parameterized  filters is similar to  the 
techniques of steerable  filters [2] and deformable ker- 
nels  [13]. However, we have chosen parabolic  inter- 
polation rather  than  the linear  combinations of the 
deformable kernels technique for simplicity and ease 
of implementation. 

Since the range of scales that we are concerned with 
may be very large and Koenderink [6] hai shown that a 
logarithmic  sampling of the scale  space is stable  and in 
accordance  with the principle that  no scale should be 
preferred  above  others, we work in the log, a domain. 
We have found that using discrete scales related by 
factors of two (a,  = 2 n a ~ )  is both convenient and 
effective. 

The result of smoothing at  each pixel with  a filter of 
scale a(x, y) can  be  estimated  through parabolic  inter- 
polation using the response of the discrete filter that 
is closest to  the desired scale, F,, (x, y), and  its two 
neighbors, F,,-, (x, y) and F,,,, (x,  y). In determin- 
ing an  equation  that yields the  appropriate response, 
it is useful to  perform a coordinate  transform such 
that z = log, v. For (Tk-1 = i a k  = i a k + l ,  this 

transformation  it is simple to  show that  the response 

x z y  

yields z k - 1  = -1, zk = 0, and Z k + l  = 1. With  this 

we want is given by: 

F(z ,y)  x uz2 + bz + c  
1 

L 

c = F,, 

4 Edge detection 
' :i 

Following the varial. 'e-sale  smoothing  described 
above, we proceed with  Canny's  edge  detection 
method [l] on the smoothed  image.  This  technique 
computes the image gradients over the image in the 
X- and y-directions in order to  determine the orien- 
tation  and  magnitude of the gradient at each pixel. 
Note, however, that if the gradient  magnitudes  are to  
be  comparable, we must  normalize them.  This  can  be 
easily be seen by noticing that  the response of a step 
edge to  a Gaussian  derivative  filter varies with the 
scale of the filter.  A  1-dimensional  Gaussian deriva- 
tive aligned  with  a step edge yields a response pro- 
portional t o  $. To correct this  problem, we normalize 
the  gradient  magnitude at each pixel by multiplying 

Finally,  non-maxima  suppression is performed and 
the edges are thresholded  using  hysteresis  threshold- 
ing. We determine the hysteresis  thresholds  adap- 
tively through examination of the histogram of gra- 
dient magnitudes. 

Figure 2 shows an example of edge  detection  with 
and  without stereo-guided scale  selection. The orig- 
inal  image has 750 x 500 pixels and  can be  found  in 
Figure 1. In  this example, the edges were detected at 
three  scales (a  = 1.0,2.0,4.0)  without the help of scale 
selection. Also given  is the result  with scale selection, 
where the filter response at each pixel was interpolated 
from the  same  three scales. 

It  can  be seen that when a small  scale (c = 1.0) is 
used, many of the edges due  to phenomena close to  the 
camera are rough  and a number of extraneous edges 
are  detected  due to  the small  scale, even though  there 
is little  image  texture. However, when the scale is 
increased, we lose the details at the  further phenomena 
(see, for example,  the  trees  in  the background and 
the  end of the railing). On  the  other  hand, when the 
scale is selected  adaptively.using the stereo  range  map, 
we have good  performance at both close and f a r  edge 
phenomena.  In  this case, the edges that  are detected 
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Figure 2: Edge  detection  results  for  the  image  in  Figure 1. (a)  Edges  detected  with (T = 1.0. (b) Edges  detected  with 
(T = 2.0. (c)  Edges  detected  with (T = 4.0. (d)  Edges  detected  with  stereo-guided  scale  selection. 

are at the  same scale  in  world, rather  than  the same 
scale in the image. 

I 

j 5 Adaptive edge salience  evaluation 
i 

In  addition to  its use  in  performing  edge  detection, 
range data is helpful in determining  edge  salience. 
Shorter edges that  are detected at  a  larger  distance 
are more likely to correspond to salient world edges 
than edges at close range that  appear  to  be long  due 
to perspective  effects. We have  primarily  examined 
the summed gradient  magnitude over the length of the 
edge  and the local  straightness of the edge as salience 
criteria,  although  many  other  salience  measures could 
be used [14]. 

Consider, for example, a saliency  measure  where 
the gradient  magnitude is summed  along the  length 
of the edge. The range data can  be used to weight 
the gradient magnitude by the  true edge  length  rather 

than  the  image edge  length.’  Alternatively, we could 
sum  the  ranges to  the pixels (normalized  appropriately 
for tlie field-of-view and  edge  direction) to  estimate 
the  length of the edge  in the world coordinates. 

As a second  example, we may  consider the local 
straightness of an edge at each of its edge  pixels by 
examining the difference in the gradient  direction at 
neighboring  edge pixels along the edge. However, we 
would not  expect  identical  edge  phenomena  appear- 
ing at different  ranges to yield the  same differences 
in gradient  direction  between  neighboring  pixels. The 
edge closer to  the camera will appear to be straighter 
locally, since the gradient differences will be  smaller 
between  neighboring pixels. To correct  this  situation, 
the differences in  gradient  direction  can  be  weighted 
by the  range to  the edge. 

We have  implemented both of these  techniques, and 
they have  resulted in a substantial improvement in our 

‘Note that, for  non-frontal  scenery, the orientation of the 
edge  also  affects the edge length. This effect can be accounted 
for if we estimate  the three-dimensional orientation of the edge. 



target  application. 

6 Relation to  previous work 

Our method  for variable-scale smoothing  can  be in- 
terpreted as a technique to select,  for each pixel in the 
image, a particular scale from the scale-space [15]: 

We search  for  edges f.! (..- {)ear at the  appropriate 
scale given  by the sterec. ria il:d disregard the other 
scales. 

Alternative methods for selecting a local scale from 
the scale-space have been given by several  authors. 
Jeong  and Kim [5] select the local scales through  the 
minimization of an energy functional over the scale- 
space using a regularization  approach. The functional 
includes terms that encourage a large scale in uniform 
intensity  areas, a small scale where intensities  change 
significactly, and a smoothly  varying  scale over the 
image. Morrone et  al. [ll] suggest that  the local scale 
should be a  monotonically  decreasing  function of the 
gradient  magnitude.  They  argue that  this results  in 
good  localization through  the use of a small scale when 
the contrast is high and good sensitivity using a  large 
scale with the  contrast is  low. Lindeberg [8] notes 
that edge detection  procedures seek to find maxima 
in the gradient magnitude in the  spatial variables and 
that this  principal  can also be applied to  the scale 
variable. He thus seeks the edge position  in the scale- 
space where gradient  magnitude is maximized. 

Unlike these  methods, we select the local scale of 
examination  based on  an  estimate of the  true scale 
rather  than  trying  to determine an  appropriate scale 
through  examination of the image. Our  method is 
thus likely to yield better results when the real-world 
scale is the  important one. 

As an  alternative  to selecting a single scale, these 
techniques  can be used to complement scale-space 
techniques [15]. In  this case, the stereo  range data 
would be used to  transform  the scale-space such that 
each scale plane was level with  respect to  the  true scale 
rather  than  the image scale. 

7 Results 

Our target  application for these  techniques is to rec- 
ognize surface-lying ordnance in military  test ranges 

Figure 3: Ordnance  recognition  examples.  (a)  Correct de- 
tection  at close range. (b) Correct  detection  at  medium 
range  and  a  false  positive. . .  -,. ,4 ,.-. , 

using a  stereo  system  mounted  on an unmanned 
ground vehicle for the purpose of autonomous reme- 
diation.  One  method to  evaluate the edge  detection 
techniques is by the performance of this  application 
when using the stereo-guided  smoothing and edge de- 
tection versus the performance when it is not used. 
We have tested the techniques using a set of 48 gray- 
scale images consisting of barren  terrain  with  an  inert 
piece of ordnance  present at various distances and ori- 
entations (see Figure  3). 

In  this  experiment, we tested  three scales individu- 
ally (0 = 0.8,1.6,3.2), the combination of all hypothe- 
ses found at  the  three discrete  scales, and  the  result 
with  stereo-guided  scale selection using the same three 
scales to  interpolate from. After edge  detection was 
performed, an algorithm to detect the ordnance using 
geometric cues was used to find candidate positions 

Table 1 summarizes the results of this  experiment. 
When  the variable-scale smoothing and edge detec- 
tion was performed, we achieved 40 correct recogni- 
tions out of the 48 cases. The eight failures  occurred 
due to cases where the ordnance was a significant dis- 
tance from the  camera  and  at  an  orientation nearly 
aligned with the  camera axis. In addition,  18 false 
positives were detected  in  the images. Figure 3 shows 
two examples,  one of which contains a false positive. 

For each individual scale that was examined, we 
had  more cases where the ordnance was missed than 
with stereo-guided  scale selection, and  in two of them, 
we also  found  more false positives. While u = 4.0 
achieved 4 less false positives, the detection perfor- 
mance was significantly  degraded,  since 5 additional 
ordnance  instances were missed. When all of the can- 
didates from the  three scales were combined (with  du- 
plicates removed), we achieved a slightly better detec- 

E121. 
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Table 1: Results in ordnance  recognition application. 

tion performance  with only 7 false negatives, but in 
this case the  nynber of ' c b  ---:tives rose  sharply to 
45. 

Overall, the  stere selection techniques 
resulted  in significantly SL~)F. performance to any of 
the individual  scales or the combination of the scales. 

8 Summary 

We have described  techniques that perform  smooth- 
ing and edge detection  adaptively using the results of 
stereoscopy to  vary the scale at each pixel. This allows 
processing of the image to  be performed with  respect 
to  the  true scale of objects  rather  than  the scale ob- 
served in the image.  Stereoscopy  has also been applied 
to  evaluating the edge salience with  respect to  the  true 
scale. 

These  techniques have been  implemented as a vari- 
ation of the  Canny edge detector. We first convolve 
the image  with  Gaussian  derivatives at a discrete  set of 
scales. The correct  response at each image pixel is  es- 
timated  through  parabolic  interpolation of the known 
responses and  normalization is performed so that  the 
results are  comparable across the image. 

We have shown that these  techniques yield desir- 
able  results  on an image  containing a wide range of 
scales. Furthermore, the application of this  method 
to a data set for our  target application of detecting 
unexploded  ordnance in test ranges  resulted  in a con- 
siderable  improvement  in  performance. 
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